robustx.lib package
Subpackages
- robustx.lib.distance_functions package
- robustx.lib.intabs package
- robustx.lib.models package
- Subpackages
- Submodules
- robustx.lib.models.BaseModel module
BaseModel
BaseModel._model
BaseModel.train()
BaseModel.predict()
BaseModel.predict_single()
BaseModel.predict_proba()
BaseModel.predict_proba_tensor()
BaseModel.Properties()
BaseModel.evaluate()
BaseModel.model
BaseModel.predict()
BaseModel.predict_proba()
BaseModel.predict_proba_tensor()
BaseModel.predict_single()
BaseModel.train()
- robustx.lib.models.Models module
- Module contents
- robustx.lib.tasks package
Submodules
robustx.lib.DefaultBenchmark module
- robustx.lib.DefaultBenchmark.default_benchmark(ct, methods, evaluations, subset=None, **params)[source]
Generates and prints a table summarizing the performance of different counterfactual explanation generation methods.
@param ct: ClassificationTask. @param methods: A list or a set of method names. @param evaluations: A list or a set of evaluator names. @param subset: optional DataFrame, subset of instances you would like to generate CEs on @param **params: Additional parameters to be passed to the CE generation methods and evaluators. @return: None
robustx.lib.OptSolver module
- class robustx.lib.OptSolver.OptSolver(ct)[source]
Bases:
object
A solver class that uses Gurobi to optimize a model based on a given task and instance.
Attributes / Properties
- task: Task
The task to be optimized.
- gurobiModel: Model
The Gurobi optimization model.
- inputNodes: dict
Dictionary to store Gurobi variables for input nodes.
- outputNode: Gurobi variable
The Gurobi variable representing the output node.
- setup(instance, desired_output=1, delta=0.5, bias_delta=0, M=1000000000, epsilon=0.0001, fix_inputs=True):
Sets up the Gurobi model with constraints based on the provided instance and parameters.
- -------
- setup(instance, delta=0, bias_delta=0, M=1000, fix_inputs=True)[source]
Sets up the Gurobi model with constraints based on the provided instance and parameters.
@param instance: pd.DataFrame or list, The input data instance for which to set up the model. @param desired_output: int, Optional, The desired output value (default is 1). @param delta: float, Optional, The delta value used in constraints (default is 0.5). @param bias_delta: float, Optional, The bias delta value used in constraints (default is 0). @param M: float, Optional, A large constant used in constraints (default is 1000000000). @param epsilon: float, Optional, The epsilon value used in constraints (default is 0.0001). @param fix_inputs: bool, Optional, Whether to fix input values or use variable bounds (default is True).
@return: None