Source code for robustx.datasets.provided_datasets.IrisDatasetLoader

import pandas as pd
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler

from robustx.datasets.provided_datasets.ExampleDatasetLoader import ExampleDatasetLoader


[docs] class IrisDatasetLoader(ExampleDatasetLoader): """ A DataLoader class responsible for loading the Iris dataset """ def __init__(self,seed=None): categoricals = [] numericals = ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'] super().__init__(categoricals, numericals, seed=seed)
[docs] def load_data(self): iris = load_iris(as_frame=True) self.data = iris.frame
[docs] def get_default_preprocessed_features(self): scaler = StandardScaler() data_preprocessed = scaler.fit_transform(self.data.drop(columns=["target"])) data_preprocessed_df = pd.DataFrame(data_preprocessed, columns=self.numerical) return data_preprocessed_df
@property def X(self): return self.data.drop(columns=["target"]) @property def y(self): return self.data[["target"]]